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minations made with aqueous solutions of crude 
gliadin. It is completely absent from purified 
gliadin. Like gliadin, wheat globulin has a wide 
stability range. It is stable from pR 11 through 
pB. 2.23, the lowest pK studied. 

TABLE IV 

AQUEOUS SOLUTIONS OP CRUDE GLIADIN. SEDIMENTATION 

VELOCITY MEASUREMENTS 

Experimental conditions as in Table I I I 
520 X 10" 

i>H Wheat globulin Gliadin 

2.40 6.0 11.0 15.3 . . 2.0 

2.23 7.0 10.3 . . . . 2 .2 

2.23 18.0 26.7 2 .3 

The expenses connected with this investigation 
have been defrayed by grants from the Rockefeller 
Foundation, the Nobel Foundation, and the founda­
tion Therese och Johann Anderssons Minne. 

Summary 

1. An ultracentrifugal study has been made 

Although Svedberg and his co-workers2 have 
found that many of the proteins, when properly 
purified, are uniform in molecular weight (i. e., 
are monodisperse), macromolecular substances 
are generally non-homogeneous in this respect. 
The typical high polymers, for instance, consist of 
a mixture of molecules of different sizes, represent­
ing different degrees of polymerization. In such 
cases the usual methods of measuring molecular 
weight yield average values, but as has been 
pointed out in a previous paper of this series,3 

different methods may yield different kinds of 
"average molecular weights" which are not di­
rectly comparable. Unfortunately, this fact has 
not yet been properly considered in previous at­
tempts to compare the results of various investi­
gators, so that a great deal of confusion has re­
sulted. 

The authors have already pointed out that at 
(1) Paper No. I l l on the Molecular Weight of Linear Macro-

molecules by Ultracentrifugal Analysis. 
(2) Svedberg, Chem. Rev., 14, 1 (1934); also many papers in 

THIS JOURNAL, 1926-1934. For complete bibliography see Natur-
wissenschaften, 22, 225 (1934). 

(3) Kraemer and Lansing, J. Phys. Chem., 39, 153 (1935). 

of the proteins extracted from wheat flour by 0.5 N 
solutions of the potassium halides. These solu­
tions, in the order potassium fluoride, potassium 
chloride, potassium bromide and potassium iodide, 
extract mixtures of proteins of increasing average 
molecular weight. 

2. Wheat flour was extracted successively with 
0.5 N solutions of potassium fluoride and potas­
sium chloride; the extracts were further frac­
tionated by dialysis. The material precipitated 
by dialysis probably consists largely of gliadin 
and wheat globulin. The globulin, which or­
dinarily has a sedimentation constant of 11, 
polymerizes in concentrated solutions to molecules 
of sedimentation constant 17 atid 25, and dis­
sociates on dilution. The material not precipi­
tated by dialysis, probably a mixture of leucosin 
and proteose,' consists of small molecules and is 
inhomogeneous with respect to molecular weight. 
UPSALA, SWEDEN RECEIVED M A Y 6, 1935 

least two "average molecular weights" must be 
distinguished. The usual physico-chemical meth­
ods involve counting of the molecules, and 
thus yield a "number-average" molecular weight. 
On the other hand, Staudinger's viscosity 
method,4 when applicable, yields a "weight-
average" molecular weight. In the present 
paper a third quantity is introduced, the "Z-
average" molecular weight, which may be ob­
tained from ultracentrifuge data. 

These three different averages are defined by 
the following equations 

number-average Mn = - ^ - = ^ ^ (1) 

Z»i Mf Son AT; 
weight-average M„ = ^ - ^ = - ^ - (2) 

Z»i Af? XWi Mf 
and Z-average MT, = m = — (3) 

S»i Mf XWi Mi v ' 

where w, is the number of molecules of molecular 
weight Mi, while vi\ is the total weight of that 
molecular species. For polymeric materials con-

(4) Staudinger, "Die hochmolekularen organischen Verbin-
dungen," J. Springer, Berlin, 1932. 
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taining a single type of structural unit, the values 
of My are restricted to whole-number multiples of 
the weight of the unit (162 for cellulose, 104 for 
polystyrene, etc.). The equations are valid for 
any sort of mixture, however. 

The most satisfactory method so far developed 
for the determination of the molecular weights of 
macromolecular materials is by means of sedi­
mentation equilibrium in the Svedberg ultra-
centrifuge. It has already been shown6 that the 
equations for sedimentation equilibrium in the 
ultracentrifuge can be derived from thermo­
dynamic considerations only. Such a derivation 
leaves out all reference to the shape of the mole^ 
cule, and requires only that the solution be suf­
ficiently dilute so that it behaves like an ideal 
solution. It has also been shown experimentally 
for one case6 that the molecular weight of a linear 
macromolecule can be correctly determined by 
sedimentation equilibrium. 

In addition to the advantages of a satisfactory 
theoretical background and a relatively small ex­
perimental error, the sedimentation equilibrium 
method is unique in that it gives information re­
garding the uniformity of the material studied. 
It will be shown below that all three average 
molecular weights defined above may be calcu­
lated from sedimentation equilibrium. This en­
ables a comparison to be made betwen ultracen­
trifuge data and such measurements of molecular 
weight as are given by osmotic pressure and vis­
cosity. It is expected that such a comparison 
will throw definite light on the usefulness and 
applicability of Staudinger's viscosity method. 
The amount by which the three average molecular 
weights differ will also be shown to give a numeri­
cal measure of non-uniformity. 

Sedimentation Equilibrium 

In general, the concentration of a solution sub­
jected to a centrifugal or a gravitational field 
varies in the direction of the field, and at equi­
librium the resulting concentration gradient is 
such that at every point in the solution the chem­
ical potential is equal but opposite in sign to the 
gravitational potential. In ultracentrifugal an­
alysis this concentration gradient is experimen­
tally determined either by a light-absorption 
method or by a refractive-index method. The 
light-absorption method involves photographic 

(5) Svedberg, Z. physik. Chem., A121, 65 (1926); Pedersen, ibid., 
AlTO, 41(1934). 

(6) Kraemer and Lansing, T H I S JOURNAL, BB, 4319 (1933). 

photometry, and gives directly the concentrations 
at all points along the cell in the ultracentrifuge. 
In the refractive-index method a transparent scale 
is photographed through the solution,- and the dis­
tortion of the scale measured. As shown by 
Lamm,7 the distortion of the scale is proportional 
to the refractive index gradient, which in turn is 
proportional to the concentration gradient for the 
low concentrations used in practice. Thus the re­
fractive-index method gives directly the values of 
the concentration gradient at all points along the cell. 

For an ideal solution of a homogeneous solute, 
Rinde8 has shown that the concentration at any 
point in the cell may be expressed by means of the 
equation 

in which Cx is the concentration by weight at 
point x, C0 is the initial uniform concentration, b 
is the distance from the center of rotation to the 
bottom of the cell, a is the corresponding distance 
to the meniscus, x is the distance to the point in 
question and A = (1 — Vp)co2/2RT where V is the 
partial specific volume of the solute, p is the den­
sity of the solution, to is the angular velocity of 
the cell, R is the gas constant, and T is the ab­
solute temperature. 

The equation commonly used for calculating 
molecular weight from sedimentation equilibrium 
by the absorption method is 

M - 2RTln [Cl/Cl] = I V l n ^ / c ' l (^ 
(1 - VPW(xl -x\) AX 4 -4 {0) 

The corresponding equation for the refractive-
index method is as follows 

i [~— /—' 1 
M = 2,RT In [Z2XiZZ1X2] _ 1_ Ld* ' / dx 2J . . . 

(i - v»«'(*! - *J) A 4 -4 { 

where Z, the scale displacement, was shown by 
Lamm to be given by the equation 

Z = GtL ^ = kf- (7) 
dx dx 

G being the magnification of the displacement by 
the camera, t the cell thickness, L the distance 
between the scale and the cell, dn/6x the gradient 
of refractive index, k a constant of proportionality, 
and dc/dx the concentration gradient at the im­
position in question. 

If the material is heterogeneous with respect to 
molecular weight, we may assume that each 

(7) Lamm, Z. physik. Chem., 143, 177 (1929). 
(8) Rinde, "The Distribution of the Sizes of Particles in Gold 

Sols," Dissertation, Upsala, 1928, p. 176. 



July, 1935 MOLECULAR WEIGHT ANALYSIS OF MIXTURES WITH THE ULTRACENTRIFUGE 1371 

molecular species sets up its own equilibrium ac­
cording to equation (4), independent of the others. 
In that case, for the mixture as a whole 

CM M\ 
Cx = Sc 1 ; = A(b* - o 2 )S 

g-AUi(b'-a 

(8) 
where c0i is the original concentration of the com­
ponent of molecular weight M-v and Cx; is the 
concentration of the same component at x after 
the attainment of equilibrium, M-x representing in 
turn each and every molecular species in the mix­
ture. The concentration gradient at any point, 
obtained by differentiation of equation (8), is 
given by the equation 

% = 2^M»' - «')2 T _ **(p,.a^-AM>0,-'> O) 

This may also be written 

jg = IAx ZdMi (10) 

In experimental work it is customary to apply 
equation (5) or (6) to the experimental data, re­
gardless of whether the material is homogeneous 
or not, and it is assumed that the light absorption, 
index of refraction, and partial specific volume of 
the solute are independent of molecular weight 
when these quantities are calculated per gram of 
solute. There is good experimental evidence to 
show that this is normally the case for high poly­
mers. In what follows, we shall also assume the 
absence of dissociative or associative equilibria 
of all kinds between the molecular species of the 
solute. 

If the values of molecular weight as calculated 
by equations (5) or (6) vary with the distance 
along the cell, it is inferred that the material 
being centrifuged is non-uniform.9 I t may be 
shown that these values of molecular weight repre­
sent, respectively, the weight-average and Z-aver­
age molecular weights for the material present 
at the point of the cell in question, and that from 
these values the weight-average and Z-average 
molecular weights of the solute mixture as a whole 
may be calculated. In order to show these re­
lationships, it is necessary to convert equations 
(5) and (6) to the differential form; *. e. 

l 
MW1 = — X „ . 

UX 2. Axe 
(H ) 

Mz, = {M X (12) 2AxZ) 2Ax2 

where Mm and Mz% refer to the molecular 
weights calculated for the point x ha the cell. 

(ft) Svtdktrg, J . physik.Chtm., I l l , «5 (1326). 

Substitution of values of Cx and dc/dx from equa­
tions (8) and (10) into the above equations gives 

and 

Afw 

Mzx 

Scx, 

SCdAf? 
ZcxiM; 

(13) 

(14) 

Since the concentrations are expressed by weight, 
these equations correspond exactly to the defini­
tions as given by equations (2) and (3) for the 
weight-average and Z-average molecular weights 
of the material at the level x. 

It is apparent that if the values of X\ and X2 

in equations (5) and (6) are chosen sufficiently 
close together, the values of M obtained thereby 
will approach as close as we please to those cal­
culated from the differential forms of the equa­
tions. Numerical examples show that the usual 
distance of 0.05 centimeter between Xi and X2 

is sufficiently close for practical purposes. 
In order to obtain average values of the 

molecular weight for all the material in the cell, 
integration must be carried out over the entire 
cell length. It is apparent that these averages 
may be obtained by means of the following inte­
grations 

M„ = 

Mz 

X MwxxcxAx 

X xc^&x 

X' MzxZAx 

X 

(15) 

(16) 
ZAx 

since substitution into these integrals gives pre­
cisely our previous definitions for weight-average 
and Z-average molecular weights. 

The number-average molecular weight is not so 
readily obtained. By definition 

Sc*; 
Max 

It can be shown that 
2cxi/Mi 

(17) 

a S - " JT^+8S (i8) 

which gives us a method of determining number-
average molecular weight at the point x, providing 
the constant of integration can be determined. 
The number-average of the entire solute may be 
determined by means of the equation 

Mn = X XCxAx 

J ^b XCxAx 
(19) 
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Uniformity 

The equations developed above hold for any-
conceivable distribution of molecular weights. 
No matter what the distribution, average molecu­
lar weights can be calculated from the above ex­
pressions with an accuracy limited only by the 
conditions of the experiment and the methods 
of integration. I t is a more difficult problem, 
however, to determine a distribution curve from 
sedimentation equilibrium data. Rinde8,10 has 
developed a method involving the solution of a 
series of simultaneous equations. Due to un­
avoidable inaccuracies in the experimental data, 
this method may give results that are quite un­
reasonable, such as a negative number of mole­
cules of a particular size class. In a second 
method of calculation Rinde overcame this ob­
jection by using a very difficult polynomial. Both 
methods are very tedious to use in practice, and 
the mathematics is rather involved. 

For ordinary purposes it is perhaps as useful 
and in any case much simpler to determine from 
sedimentation equilibrium data an average mo­
lecular weight and some number which may be 
called "non-uniformity coefficient." This aver­
age molecular weight and the non-uniformity co­
efficient may very well be parameters in some 
simple distribution function. 

Most distribution functions involve the con­
cept of a continuous variation in molecular 
weight, whereas actual polymeric materials con­
tain components differing in molecular weight 
by definite steps. However, since the steps are 
ordinarily small compared to the molecular 
weights involved, it is probable that little error is 
introduced by using a continuous distribution 
function, and the mathematical methods are con­
siderably simplified. For most cases of experi­
mental interest, it is justifiable to limit considera­
tion to curves with a single maximum. In gen­
eral, polymeric materials contain very little if any 
low molecular weight material, so it is desirable 
that the distribution function be so chosen as to 
have a substantially zero number of molecules at 
low molecular weights. 

One of the simplest distribution functions meet­
ing these conditions is a logarithmic number dis­
tribution curve, corresponding to the equation 

An = -^= e-»!dy (20) 

(10) Svedberg and Nichols, T H I S JOURNAL, 48, 3081 (1926), 

especially page 3090. 

in which 
y = (In M/Mo)/0 (21) 

N is the total number of molecules and dn is the 
number corresponding to the interval between y 
and y + dy. When this distribution is written 
on the weight basis it becomes 

dw = . r ** _ e-v*dM (22) 

in which dw is the weight of the material having a 
molecular weight between M and M + dM, W 
is the total weight of material, M0 is the molecular 
weight at the maximum value of dw/dM, and (3 
is what we shall call the non-uniformity coefficient. 
For the logarithmic distribution we have the 
following expressions for the three average 
molecular weights discussed above, and for the 
most probable molecular weight, Mp 

M0 = ifpe°-532 

Af11 - M^V 
M„ = Mrf* W K ' 
Mz = Afpe1-75^ 

It is apparent that values of Mv, M0 and /3 can 
readily be obtained if we know any two of the 
average values. Table I illustrates how these 
quantities are related numerically. 

/3 

0 
.2 
.4 
.8 

1.2 
1.6 
2.0 

Mp 

1 
1 
1 
1 
1 
1 
1 

TABLE I 

Mo Mn 

1.00 1.00 
1.02 1.03 
1.08 1.13 
1.38 1.62 
2.05 2.93 
3.60 6.83 
7.39 20.1 

M w 

1.00 
1.05 
1.22 
2.23 
6.05 

24.5 
148 

The logarithmic number distribution function 
is not the only possible distribution curve fitting 
a given set of average molecular weights. Theo­
retically there are many such curves. For 
single-maximum curves, none deviates very much 
from the logarithmic curve, and in general the 
form of these other curves is unknown. It is 
justifiable, then, to use the logarithmic function 
for purposes of illustration. Although the mo­
lecular weight distribution of a given polymer is 
not thus determined unequivocally, the non-uni­
formity coefficient /3 may be defined by means of 
equations (23) without reference to the type of 
distribution. A perfectly homogeneous material 
is characterized by /3 equal to zero, while the more 
non-uniform a material is, the larger the value of /S. 

Practical Methods of Calculation.-—An ex­
amination of the theory of sedimentation equi-
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librium given above shows that several integra­
tions must be carried out during the calculations. 
One of the simplest methods for approximate in­
tegration of experimental data is the trapezoidal 
rule, in which the curve between the two points 
(xh Ci) and X2, C2) is replaced by a straight line. 
Since both the concentration and the Z curves are 
concave upward, this method always gives high 
results. 

A more accurate method is to replace the curve 
between the two points (xi, C\) and (x2, c2) with 
the arc of a sedimentation equilibrium curve for a 
uniform material. If we combine all the terms 
in equation (4) that do not depend on x, we get 

Cx = Ke*M*> (24) 

When K and M are chosen as arbitrary constants, 
it is always possible to pass this curve through 
any two points (xi, Ci) and x2, C2). In this case M 
takes the value of Mm obtained by substituting 
the given values of x and c in equation (5). It 
can readily be shown that, upon the basis of the 
above assumptions 

f*'xcAx = 21k;(C2 ~c,) (25) 

By an entirely similar argument, we can show 
that 

The values of the integrals I xcxdx and 

I Zdx, required in equations (15) and (16), will 

then be the sum of the integrals of the several 
segments as determined by equations (25) and 
(26). Since we usually calculate molecular 
weights at x-intervals of 0.05 cm., the same inter­
vals can be used for carrying out the integration. 

Upon multiplying both sides of equations (25) 
and (26) with Mm and MZK, respectively, and 
adding the integrals of the several segments, we 
see that 

Cb 1 

I M„Kxcxdx = o j (Cb — c«) (27) 

and 

f Mz*Zdx = ^j {Zb/b - ZJa) (28) 
It will be observed in this method that we re­

place the variable molecular weight with an aver­
age value in the small interval between X1 and X2. 
This same procedure can be used for determining 
the integrals in equation (19) used for determining 
the number-average molecular weight. In this 

case we divide equation (25) by an average value 
of Mnx, and thus get 

J "b XCTAX 

a M^ 

by adding the integrals of the several segments. 
Since the details of the calculation are different 

for the light-absorption and the refractive-index 
methods, we shall discuss each one separately. 

In the case of the refractive-index method, the 
original data are plotted as scale displacements Z 
against cell distance x. From a smooth curve 
drawn through the experimental data, values of Z 
are taken at regular intervals of x, usually at in­
tervals of 0.05 cm. The molecular weight 
Mzx is calculated by means of equation (6), 
and the results plotted as a function of cell dis­
tance. I t must be remembered, of course, that 
the value of x corresponding to a particular value 
of M2x is the mid-point of the interval for which 
M2x was determined. Before the calculations 
can proceed further, it is necessary to extrapolate 
to the ends of the column of liquid in the cell. 
This is best done on the molecular weight plot, 
and the corresponding values of Z are calculated 
by equation (6) from extrapolated values of MZx. 
The Z-average molecular weight, Mz, may be ob­
tained by means of equation (16), after the two 
integrals involved have been evaluated with the 
help of equations (26) and (28). 

The concentrations along the cell, which are re­
quired for calculating Afw, are obtained by inte­
gration of the scale displacement data. Upon 
integration of equation (7), we obtain 

GtL^(Cx - Ca) = J Zdx (29) 

This integration can be carried out at the same 
time that Mz is calculated. The constant of in­
tegration c„ is the concentration at the meniscus, 
and can be determined by so choosing ca that 

rb fb 
I xcxdx = co I xdx (30) 

Ja Ja 
The first integral corresponds to the total amount 
of material in the cell after attainment of equi­
librium; the second integral is the total amount 
of material at the beginning of the run before 
sedimentation has started. From the values of cx 

calculated by this method we can obtain Mwx by 
the use of equation (5). The weight-average 
molecular weight, Mv, may be obtained from 
these data by means of equations (15), (25) and 
(27). 
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In the case of the light absorption method, the 
original data yield a curve of concentration against 
cell distance. The molecular weight, Mm, may 
be calculated by means of equation (5) from values 
of x and c taken at regular intervals. Here, again, 
extrapolation to the ends of the column of liquid 
in the cell is necessary before the calculations can 
be completed. This is best done on the molecu­
lar weight-cell distance plot, exactly as for the 
refractive index case. The weight-average mo­
lecular weight may now be obtained by integration. 

In order to obtain MZx values from light ab­
sorption runs, it is necessary to differentiate the 
concentration-cell distance curve. This may be 
done very simply by rearranging equation (11) 
to give 

dc/dx = 2AMy1xXcx (31) 

With the help of equation (7), we obtain 

Z/x = 2AGtL^ (M^xCx) ac 
(32) 

In this expression, Mwx refers not to the usual 
values, obtained from equation (5), but to the 
values denned by equation (11). The latter 
figures can readily be obtained by graphical inter­
polation of the usual molecular weight figures. 

From the various values of Z/x as determined 
by equation (32) we can calculate MZx using 
equation (6). This calculation, as will be shown 
below, is not necessary for getting the Z-average 
molecular weight, Mz; it does, however, give 
some information regarding the ideality of the 
solution. 

Upon suitable combination of equations (16), 
(28), (29) and (32), it can be shown that 

M„hCi — M„aCa 
Mz = 

Cb Co. 
(33) 

It is thus simpler to obtain the Z-average molecu­
lar weight from concentration data than from 
scale-displacement data. 

All of the calculations and equations given 
above rest on the implicit assumption that the 
solution obeys Henry's law throughout the 
centrifuge cell. Although it is possible for non-
ideal cases to derive equations similar to several 
of those given above by using activities instead of 
concentrations, it is not possible to determine 
the average molecular weights. Fortunately, 
marked deviation from Henry's law reveals itself 
in the character of the sedimentation equilibrium. 
Previous discussions6,11 have indicated a qualita­
tive rule, for which a proof will now be given. 

CIl) Signer and Gross, HeIv. Chim. Ada, 17, 335 (1934). 

Differentiation of equations (11) and (12) with 
respect to x and substitution of values of cx and 
dc/dx from equations (8) and (10) yield the equa­
tions 

&M„ 
dx -"-Fg-e&y] <" 

and 

dx 2Ax LZcxlMi V 2Cx1Af1) J
 X60) 

For any distribution whatever the quantities in 
the square brackets are positive when Henry's 
law is obeyed (except in the special case of a uni­
form material, when these quantities are zero). 
Stated in words, the molecular weights calculated 
by means of equations (5) and (6) must always 
increase toward the more concentrated end of the 
cell. A maximum in the molecular weight-cell 
distance curve is impossible as long as Henry's 
law is obeyed. The presence of such a maximum, 
then, is definite evidence of non-ideality of the 
solution. Experimentally, it has been found 
that the scale displacement method is more sen­
sitive than the absorption method in detecting 
deviations from Henry's law. 

The above method is qualitative in that it 
gives no data regarding the magnitude of the 
activity coefficient of the solute. Moreover, it is 
possible that a small departure from Henry's 
law would not cause a maximum in the curve. It 
is tacitly assumed above that the deviation is in 
the direction of a "swelling pressure" added to 
the osmotic pressure, that is, that the activity 
coefficient becomes greater than unity. A devia­
tion from Henry's law in the opposite direction 
would not be detected by this test. Such a devia­
tion would, however, be anomalous for a macro-
molecular material. In any case, the only safe 
procedure is to employ concentrations so low 
that the results are independent of concentration. 

Both the Z-average molecular weight and the 
weight-average molecular weight may be deter­
mined as outlined above with a fair degree of ac­
curacy. The errors involved are mainly experi­
mental, and rarely exceed 10%, except in ex­
tremely unfavorable cases. Calculation of the 
number-average molecular weight, on the other 
hand, involves a constant of integration which 
cannot be evaluated from ultracentrifuge data in­
dependently of the values of Mnx. For this 
reason number-average molecular weights are not 
considered as reliable as the other two averages. 
It is, however, important to calculate Mn be-
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TABLE II 

MOLECULAR WEIGHT OF GELATIN 

x, cm. 

5.53 
5.59 
5.64 
5.69 
5.74 
5.79 
5.84 
5.89 
5.94 
5.95 

Mi = 

Cx 

0.212° 
.222 
.232 
.244 
.260 
.286 
.332 
.417 
.606 
.673° 

" Extrapolated. 

151,000. .Mw 

M iri 

8,300° 
9,070 

10,280 
12,840 
19,110 
29,630 
44,900 
73,000 

100,000° 

= 36,000. 

2A I 

J 
0.00 X 
1.20 
2.30 
3.47 
4.71 
6.07 
7.62 
9.51 
12.20 
12.86 

Mn = 

xcdx 

10~6 

9750. Jf0 = 

ScxIfMi 

26.50 
27.70 
28.80 
29.97 
31.21 
32.57 
34.12 
36.01 
38.70 
39.36 

X 10" 

4200. JWp = 

Mnx 

-• 8,000 
8,000 
8,050 
8,150 
8,350 
8,800 
9,750 

11,600 
15,700 
17,100 

= 1000. /3 = 1 

kZ/x 

1.71 X 10 
1.91 
2.22 
2.80 
4.00 
6.43 

11.6 
23.8 
57.0 
71.6 

cause it is the only average value given by the 
usual physico-chemical methods, such as osmotic 
pressure. 

The number-average molecular weight may be 
obtained by means of equations (17), (18), and 
(19). The integral in equation (18) may be de­
termined at the same time that Mv and the inte­
gral in equation (30) are evaluated. Before mol­
ecular weights can be calculated, it is necessary to 
determine the value of 2cai/Mi, the constant 
of integration, which physically is equal to the 
concentration at the meniscus divided by the 
number-average molecular weight at the same 
point. The number-average at the meniscus 
should be less than the values of Mm and MZx 

at the same point. An equation similar to equa­
tions (34) and (35) can be derived from Mnx, 
which shows that Mnx also must always increase 
toward the more concentrated end of the cell. 
This condition also serves as a criterion for the 
choice of the constant of integration Xc^ZM1. 
By means of these two tests, it is possible to choose 
a reasonable value for this constant. From the 
values of Mnx, as has already been pointed out 
above, the number-average molecular weight 
may be determined by integration. 

The non-uniformity coefficient /3 can be ob­
tained from these three average molecular 
weights by means of equations (23). If the values 
of /3 obtained by using different pairs of these 
equations do not agree, most weight is to be given 
the value determined by means of the Z-average 
and the weight-average molecular weights. How­
ever, a disagreement definitely greater than that 
likely due to experimental error is an indication 
that the distribution of molecular weight does not 
correspond to the logarithmic function upon which 

M Zx 

19,100 

31,200 
47,400 
72,000 
95,000 
122,000 
141,000 
170,000 
224,000 

/3 is based. Notwithstanding the ambiguity 
that may sometimes arise on this account, we 
believe that at present the simplest and most 
informative way of expressing the results of sedi­
mentation equilibrium analyses on a non-uniform 
material is to give the weight-average molecular 
weight, Mw, and the non-uniformity coefficient, /3. 

Molecular Weight and Uniformity of Gelatin. 
—As a specific example of the method of analysis 
of sedimentation equilibrium data outlined above, 
we have recalculated the results on gelatin obtained 
by Krishnamurti and Svedberg.12 The original 
published data will be found in the first three col­
umns of Table II. The values of Mvx were cal­
culated from the concentration data by means of 
equation (5) and are shown in Fig. 1, Curve II. 

300,000 

% 200,000 
P 

a 

O 100,000 X 
1 

c 

m/° 

Mzx 

Jtf„* 

Mn. 

5.53 5.95 5.65 5.75 5.85 
Cell distance in cm. 

Fig. 1.—Variation of molecular weight with distance 
from axis of rotation: I, number-average molecular 
weight; II, weight-average molecular weight (data of 
Krishnamurti and Svedberg); III, Z-average molecular 
weight. 

The extrapolation of the concentrations to the 
cell bottom and to the meniscus was carried out 

(12) Krishnamurti and Svedberg, T H I S JOURNAL, 82, 2897 
(1930). 
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by plotting log Mwx against cell distance and ob­
taining the extrapolated values for Mwx which 
are given in Table II . The weight-average molec­
ular weight can be obtained from these data by 
means of equation (15). 

The number-average molecular weight was de­
termined, as may be seen from Table II, by means 
of equations (17), (18) and (19). In this case 
the constant of integration was so chosen that the 
number-average molecular weight at the meniscus 
was slightly lower than the weight.-average mo­
lecular weight at the same point (see Curve I, 
Fig. 1). 

The Z-average molecular weight was deter­
mined by differentiation of the concentration-
distance data. Values of Z/x given in column 7 
of Table II were obtained by means of equation 
(32). The Z-average molecular weights corre­
sponding to different heights in the cell were ob­
tained by means of equation (6) and are plotted 
as Curve III on Fig. 1. These values of MZx 

should have been experimentally obtained if the 
run had been carried out by the refractive-index 
method rather than the light-absorption method. 
The Z-average molecular weight of the material 
was calculated by means of equation (33). 

From the three values of Mz, Mw and Mn, 
given in Table II, it is possible to determine the 
non-uniformity coefficient /3 by means of equa­
tions (23). The values of Mz and Mw are prob­
ably determined fairly accurately by means of 
the given data. On the other hand, the number-
average molecular weight Mn depends a great 
deal on the constant of integration. In this par­
ticular case the same value of /3 is obtained from 
any two of these three average molecular weights, 
which gives increased weight to the value of 
Mn used above. The number-average molecular 
weight (9750) is what one would, expect to obtain 
by means of osmotic pressure measurements prop­
erly carried out. 

The non-uniformity coefficient, as may be seen 
from Table II, came out 1.7. This is the largest 
value of /3 that we have so far found. The equiva­
lent logarithmic distribution of molecular weights 
for this sample of gelatin is given in Table III. 

Although the results in Table III adequately il­
lustrate the application of the theory of molecular 
weight analysis, their specific validity, as quan­
titative information concerning gelatin, deserves 
some remarks. In using the logarithmic distribu­
tion, we assume that there are a very large num-

TABLE II I 

EQUIVALENT MOLECULAR-WEIGHT DISTRIBUTION OF 

GELATIN 
Per cent, by 

Molecular weight weight of total 

Less than 5000 13 
5,000to 10,000 17 

10,000to 20,000 23 
20,000to 30,000 13 
30,000to 50,000 14 
50,000 to 100,000 12 

100,000 to 200,000 6 
200,000 to 400,000 2 

ber of molecular species, differing in molecular 
weight by only small amounts, whereas, as a 
matter of fact, the sedimentation equilibrium 
method is not capable of distinguishing between 
distributions consisting of a very large or of a few 
molecular species. However, sedimentation ve­
locity runs in the ultracentrifuge fill this gap, and 
by this means Krishnamurti and Svedberg 
showed that the particular gelatin studied con­
tained more than a few molecular species. It 
should in any case be remembered that the three 
average molecular weights comprise the experi­
mental data, and the large spread in their values 
constitutes unequivocal evidence that the gelatin 
studied was dispersed in particles of very different 
size. The logarithmic distribution is inferred 
from the experimental values of the average 
molecular weights and simply represents an 
equivalent degree of non-uniformity. 

Question may also be raised concerning the 
propriety of referring to the "molecular weights" 
of the gelatin. As a matter of fact, the ultra-
centrifugal analysis only yields information on 
the sizes of the dissolved units, whether they be 
single or associated molecules. Just as in the 
case of conventional molecular-weight methods 
(boiling point, osmotic pressure, etc.) the decision 
as to whether the particle weight represents the 
molecular weight must rest on other considera­
tions. Since the ultracentrifuge run on the 
gelatin was made at a temperature of 20°, *. e., 
below the gelatin point, it may be suspected that 
the very large particles in the solution represent 
associated molecules or aggregates. Notwith­
standing this fact, the weights of the associated 
molecules should be correctly given by the sedi­
mentation equilibrium method, provided the 
solution at all points in the cell was sufficiently 
low to permit the applicability of Henry's law. 
Experiments at still lower concentrations would 
have to be carried out to prove this point, but it 
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is to be expected that deviations from Henry's 
law would apparently reduce the non-uniformity 
of the solute. 

Summary 

The theory for the determination of average 
molecular weights for mixtures has been developed 
and the need for distinguishing various kinds of 
"averages" has been discussed. It has been 
shown how number-average, weight-average, and 
Z-average molecular weights may be calculated 
from data on sedimentation equilibrium in the 

Svedberg ultracentrifuge, and the methods have 
been applied to experimental data on gelatin. 
A numerical measure for the non-uniformity of 
mixtures with respect to molecular weight has 
been proposed. The significance of the results 
in connection with macromolecular materials, 
such as cellulose, rubber, proteins, etc., has been 
explained and the correct method for comparing 
molecular weights by osmotic pressure or equiva­
lent methods and Staudinger's viscosity method 
has been elucidated. 
WILMINGTON, DELAWARE RECEIVED APRIL 8, 1935 

[CONTRIBUTION FROM THE CHEMICAL LABORATORY OP HARVARD UNIVERSITY] 

16,20-Dimethylcholanthrene 

BY LOUIS F. FIESER AND ARNOLD M. SELIGMAN 

With the idea that optically active substances 
capable of producing cancer in test animals would 
afford a very interesting field for investigation, 
we have as a first step synthesized a hydrocarbon, 
V, having an asymmetric carbon atom and of a 
type likely to possess carcinogenic activity. 
Starting with 7-methyl-4-bromohydrindone-l (I)1 

the synthesis was accomplished through the series 
of transformations I —>• V, the ketone IV being 
obtained by the interaction of the Grignard re­
agent from III with a-naphthoyl chloride. The 
very faintly yellow hydrocarbon resulting from 
the pyrolysis of IV has the composition and 
properties consistent with formula Vla. Since the 
compound is a homolog of the carcinogenically 
active2 methylcholanthrene, and since it would 
be expected from the work of Barry and others3 

that the branching produced by the added methyl 
group in the aliphatic chain attached to the 1,2-
benzanthracene nucleus at the favorable ex­
position would enhance the potency, the new hy­
drocarbon may be a favorable case for study. 
Tests for activity are being made with the de­
compound before attempting a resolution. 

(1) Fieser and Seligman, T H I S JOURNAL, 67, 942 (1935). 
(Ia) Dr. Egon Lorenz reports that the absorption spectrum of the 

hydrocarbon is practically identical in intensity and in the positions 
of the bands with that of methylcholanthrene. The absorption 
spectrum of cholanthrene, the parent hydrocardon recently synthe­
sized by Cook, Haslewood and Robinson [/. Ckem. Soc, 667 (1935)], 
is also of a similar pattern; as compared with methylcholanthrene, 
the bands are somewhat sharper and there is a general shift of about 
10 A. in the direction of shorter wave length. A synthesis of chol­
anthrene by the modified Elbs reaction will be reported shortly. 

(2) Cook and Haslewood, J. Ckem. Soc, 428 (1934)x 

(3) Barry, Cook, Haslewood, Hewett, Hieger and Kennaway, 
Prac. Roy. Soc. (London), B117, 318 (1935). 

Br AA 

Since the name "cholanthrene" has been ap­
plied4 to the unsubstitated pentacyclic structure, 
it is convenient to refer to the new hydrocarbon 
as a dimethylcholanthrene. To provide a system 
of numbering capable of application both to chol­
anthrene and to its hydro-derivatives, we pro­
pose to use the sterol numbering without modifi­
cation, even though this has the awkward feature 
of assigning the numbers 20 and 22 to ortho 
positions in a benzene ring. According to the 
suggested system (see formula V), the carcino­
genic hydrocarbon obtained from bile acids ac­
quires the specific name of 20-methylcholanthrene 
and the new hydrocarbon is the 16,20-dimethyl 
derivative of the parent hydrocarbon. 

(4) Wieland and Dane, Z. Physiol. Chem., 219, 240 (1933). 


